Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Clin Infect Dis ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598658

RESUMO

BACKGROUND: Although the SARS-CoV-2 vaccines are highly efficacious at preventing severe disease in the general population, current data are lacking regarding vaccine efficacy (VE) for individuals with mild immunocompromising conditions. METHODS: A post-hoc, cross-protocol analysis of participant-level data from the blinded phase of four randomized, placebo-controlled, COVID-19 vaccine phase 3 trials (Moderna, AstraZeneca, Janssen, and Novavax) was performed. We defined a "tempered immune system" (TIS) variable via a consensus panel based on medical history and medications to determine VE against symptomatic and severe COVID-19 cases in TIS participants versus non-TIS (NTIS) individuals starting at 14 days after completion of the primary series through the blinded phase for each of the four trials. An analysis of participants living with well-controlled HIV was conducted using the same methods. RESULTS: 3,852/30,351 (12.7%) Moderna participants, 3,088/29,868 (10.3%) Novavax participants, 3,549/32,380 (11.0%) AstraZeneca participants, and 5,047/43,788 (11.5%) Janssen participants were identified as having a TIS. Most TIS conditions (73.9%) were due to metabolism and nutritional disorders. Vaccination (versus placebo) significantly reduced the likelihood of symptomatic and severe COVID-19 for all participants for each trial. VE was not significantly different for TIS participants vs NTIS for either symptomatic or severe COVID-19 for each trial, nor was VE significantly different in the symptomatic endpoint for participants with HIV. CONCLUSIONS: For individuals with mildly immunocompromising conditions, there is no evidence of differences in VE against symptomatic or severe COVID-19 compared to those with non-tempered immune systems in the four COVID-19 vaccine randomized controlled efficacy trials.

2.
Hum Vaccin Immunother ; 20(1): 2327736, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38513689

RESUMO

The objective of the study was to assess the safety and immunogenicity of mRNA-1273 COVID-19 booster vaccination when co-administered with an egg-based standard dose seasonal quadrivalent influenza vaccine (QIV). This was a phase 3, randomized, open-label study. Eligible adults aged ≥ 18 years were randomly assigned (1:1) to receive mRNA-1273 (50 µg) booster vaccination and QIV 2 weeks apart (Seq group) or concomitantly (Coad group). Primary objectives were non-inferiority of haemagglutinin inhibition (HI) and anti-Spike protein antibody responses in the Coad compared to Seq group. 497/498 participants were randomized and vaccinated in the Seq/Coad groups, respectively. The adjusted geometric mean titer/concentration ratios (95% confidence intervals) (Seq/Coad) for HI antibodies were 1.02 (0.89-1.18) for A/H1N1, 0.93 (0.82-1.05) for A/H3N2, 1.00 (0.89-1.14] for B/Victoria, and 1.04 (0.93-1.17) for B/Yamagata; and 0.98 (0.84-1.13) for anti-Spike antibodies, thus meeting the protocol-specified non-inferiority criteria. The most frequently reported adverse events in both groups were pain at the injection site and myalgia. The 2 groups were similar in terms of the overall frequency, intensity, and duration of adverse events. In conclusion, co-administration of mRNA-1273 booster vaccine with QIV in adults was immunologically non-inferior to sequential administration. Safety and reactogenicity profiles were similar in both groups (clinicaltrials.gov NCT05047770).


What is the context? Updated booster shots against COVID-19 disease are likely to offer more protection as the virus is changing over time.It is important for doctors, other healthcare providers and patients to know whether COVID-19 booster vaccines can be given at the same time as other vaccines recommended for adults.What is new? The results of our study showed that an mRNA-based COVID-19 booster vaccine could be given at the same time as the seasonal influenza vaccine.When given together, both vaccines led to immune responses and had side effects that were similar to those observed when they were given at separate times.What is the impact? The potential benefits of administering more than 1 vaccine during a healthcare visit include improved coverage and a reduced number of doctor visits needed to receive all vaccines.Co-administration of COVID-19 booster vaccines and influenza vaccines could be an attractive option for patients and healthcare professionals.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Influenza Humana/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Vírus da Influenza B , Vírus da Influenza A Subtipo H3N2 , Vacinas contra COVID-19/efeitos adversos , Estações do Ano , Anticorpos Antivirais , Vacinas de Produtos Inativados , Testes de Inibição da Hemaglutinação , COVID-19/prevenção & controle , Imunogenicidade da Vacina
3.
Int J Infect Dis ; 137: 28-39, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820782

RESUMO

BACKGROUND: Stochastic interventional vaccine efficacy (SVE) analysis is a new approach to correlate of protection (CoP) analysis of a phase III trial that estimates how vaccine efficacy (VE) would change under hypothetical shifts of an immune marker. METHODS: We applied nonparametric SVE methodology to the COVE trial of messenger RNA-1273 vs placebo to evaluate post-dose 2 pseudovirus neutralizing antibody (nAb) titer against the D614G strain as a CoP against COVID-19. Secondly, we evaluated the ability of these results to predict VE against variants based on shifts of geometric mean titers to variants vs D614G. Prediction accuracy was evaluated by 13 validation studies, including 12 test-negative designs. RESULTS: SVE analysis of COVE supported post-dose 2 D614G titer as a CoP: estimated VE ranged from 66.9% (95% confidence interval: 36.2, 82.8%) to 99.3% (99.1, 99.4%) at 10-fold decreased or increased titer shifts, respectively. The SVE estimates only weakly predicted variant-specific VE estimates (concordance correlation coefficient 0.062 for post 2-dose VE). CONCLUSION: SVE analysis of COVE supports nAb titer as a CoP for messenger RNA vaccines. Predicting variant-specific VE proved difficult due to many limitations. Greater anti-Omicron titers may be needed for high-level protection against Omicron vs anti-D614G titers needed for high-level protection against pre-Omicron COVID-19.


Assuntos
COVID-19 , Vacinas , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , RNA Mensageiro/genética
4.
EBioMedicine ; 96: 104799, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37738833

RESUMO

BACKGROUND: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. METHODS: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7-15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. FINDINGS: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05-0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01-0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. INTERPRETATION: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. FUNDING: National Institutes of Health.

5.
JAMA Netw Open ; 6(7): e2323349, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37440227

RESUMO

Importance: Current data identifying COVID-19 risk factors lack standardized outcomes and insufficiently control for confounders. Objective: To identify risk factors associated with COVID-19, severe COVID-19, and SARS-CoV-2 infection. Design, Setting, and Participants: This secondary cross-protocol analysis included 4 multicenter, international, randomized, blinded, placebo-controlled, COVID-19 vaccine efficacy trials with harmonized protocols established by the COVID-19 Prevention Network. Individual-level data from participants randomized to receive placebo within each trial were combined and analyzed. Enrollment began July 2020 and the last data cutoff was in July 2021. Participants included adults in stable health, at risk for SARS-CoV-2, and assigned to the placebo group within each vaccine trial. Data were analyzed from April 2022 to February 2023. Exposures: Comorbid conditions, demographic factors, and SARS-CoV-2 exposure risk at the time of enrollment. Main Outcomes and Measures: Coprimary outcomes were COVID-19 and severe COVID-19. Multivariate Cox proportional regression models estimated adjusted hazard ratios (aHRs) and 95% CIs for baseline covariates, accounting for trial, region, and calendar time. Secondary outcomes included severe COVID-19 among people with COVID-19, subclinical SARS-CoV-2 infection, and SARS-CoV-2 infection. Results: A total of 57 692 participants (median [range] age, 51 [18-95] years; 11 720 participants [20.3%] aged ≥65 years; 31 058 participants [53.8%] assigned male at birth) were included. The analysis population included 3270 American Indian or Alaska Native participants (5.7%), 7849 Black or African American participants (13.6%), 17 678 Hispanic or Latino participants (30.6%), and 40 745 White participants (70.6%). Annualized incidence was 13.9% (95% CI, 13.3%-14.4%) for COVID-19 and 2.0% (95% CI, 1.8%-2.2%) for severe COVID-19. Factors associated with increased rates of COVID-19 included workplace exposure (high vs low: aHR, 1.35 [95% CI, 1.16-1.58]; medium vs low: aHR, 1.41 [95% CI, 1.21-1.65]; P < .001) and living condition risk (very high vs low risk: aHR, 1.41 [95% CI, 1.21-1.66]; medium vs low risk: aHR, 1.19 [95% CI, 1.08-1.32]; P < .001). Factors associated with decreased rates of COVID-19 included previous SARS-CoV-2 infection (aHR, 0.13 [95% CI, 0.09-0.19]; P < .001), age 65 years or older (aHR vs age <65 years, 0.57 [95% CI, 0.50-0.64]; P < .001) and Black or African American race (aHR vs White race, 0.78 [95% CI, 0.67-0.91]; P = .002). Factors associated with increased rates of severe COVID-19 included race (American Indian or Alaska Native vs White: aHR, 2.61 [95% CI, 1.85-3.69]; multiracial vs White: aHR, 2.19 [95% CI, 1.50-3.20]; P < .001), diabetes (aHR, 1.54 [95% CI, 1.14-2.08]; P = .005) and at least 2 comorbidities (aHR vs none, 1.39 [95% CI, 1.09-1.76]; P = .008). In analyses restricted to participants who contracted COVID-19, increased severe COVID-19 rates were associated with age 65 years or older (aHR vs <65 years, 1.75 [95% CI, 1.32-2.31]; P < .001), race (American Indian or Alaska Native vs White: aHR, 1.98 [95% CI, 1.38-2.83]; Black or African American vs White: aHR, 1.49 [95% CI, 1.03-2.14]; multiracial: aHR, 1.81 [95% CI, 1.21-2.69]; overall P = .001), body mass index (aHR per 1-unit increase, 1.03 [95% CI, 1.01-1.04]; P = .001), and diabetes (aHR, 1.85 [95% CI, 1.37-2.49]; P < .001). Previous SARS-CoV-2 infection was associated with decreased severe COVID-19 rates (aHR, 0.04 [95% CI, 0.01-0.14]; P < .001). Conclusions and Relevance: In this secondary cross-protocol analysis of 4 randomized clinical trials, exposure and demographic factors had the strongest associations with outcomes; results could inform mitigation strategies for SARS-CoV-2 and viruses with comparable epidemiological characteristics.


Assuntos
COVID-19 , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , COVID-19/epidemiologia , Vacinas contra COVID-19 , Demografia , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Adolescente , Adulto Jovem , Idoso , Idoso de 80 Anos ou mais
6.
Clin Infect Dis ; 77(12): 1635-1643, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37435958

RESUMO

While the coronavirus disease 2019 (COVID-19) pandemic continues to present global challenges, sufficient time has passed to reflect on lessons learned and use those insights to inform policy and approaches to prepare for the next pandemic. In May 2022, the Duke Clinical Research Institute convened a think tank with thought leaders from academia, clinical practice, the pharmaceutical industry, patient advocacy, the National Institutes of Health, the US Food and Drug Administration, and the Centers for Disease Control and Prevention to share, firsthand, expert knowledge of the insights gained from the COVID-19 pandemic and how this acquired knowledge can help inform the next pandemic response. The think tank focused on pandemic preparedness, therapeutics, vaccines, and challenges related to clinical trial design and scale-up during the early phase of a pandemic. Based on the multi-faceted discussions, we outline 10 key steps to an improved and equitable pandemic response.


Assuntos
COVID-19 , Estados Unidos , Humanos , Pandemias/prevenção & controle , National Institutes of Health (U.S.)
7.
Vaccine ; 41(33): 4899-4906, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37385888

RESUMO

Questions remain regarding the effect of baseline host and exposure factors on vaccine efficacy (VE) across pathogens and vaccine platforms. We report placebo-controlled data from four Phase 3 COVID-19 trials during the early period of the pandemic. This was a cross-protocol analysis of four randomized, placebo-controlled efficacy trials (Moderna/mRNA1273, AstraZeneca/AZD1222, Janssen/Ad26.COV2.S, and Novavax/NVX-CoV2373) using a harmonized design. Trials were conducted in the United States and international sites in adults ≥ 18 years of age. VE was assessed for symptomatic and severe COVID-19. We analyzed 114,480 participants from both placebo and vaccine arms, enrolled July 2020 to February 2021, with follow up through July 2021. VE against symptomatic COVID-19 showed little heterogeneity across baseline socio-demographic, clinical or exposure characteristics, in either univariate or multivariate analysis, regardless of vaccine platform. Similarly, VE against severe COVID-19 in the single trial (Janssen) with sufficient endpoints for analysis showed little evidence of heterogeneity. COVID-19 VE is not influenced by baseline host or exposure characteristics across efficacy trials of different vaccine platforms and countries when well matched to circulating virus strains. This supports use of these vaccines, regardless of platform type, as effective tools in the near term for reducing symptomatic and severe COVID-19, particularly for older individuals and those with common co-morbidities during major variant shifts. Clinical trial registration numbers: NCT04470427, NCT04516746, NCT04505722, and NCT04611802.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , Ad26COVS1 , ChAdOx1 nCoV-19 , Vacina de mRNA-1273 contra 2019-nCoV
8.
Cancer Commun (Lond) ; 43(7): 749-764, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37377402

RESUMO

BACKGROUND: Compared to the general population, cancer patients are at higher risk of morbidity and mortality following SARS-CoV-2 infection. The immune response to a two-dose regimen of mRNA vaccines in cancer patients is generally lower than in immunocompetent individuals. Booster doses may meaningfully augment immune response in this population. We conducted an observational study with the primary objective of determining the immunogenicity of vaccine dose three (100 µg) of mRNA-1273 among cancer patients and a secondary objective of evaluating safety at 14 and 28 days. METHODS: The mRNA-1273 vaccine was administered ∼7 to 9 months after administering two vaccine doses (i.e., the primary series). Immune responses (enzyme-linked immunosorbent assay [ELISA]) were assessed 28 days post-dose three. Adverse events were collected at days 14 (± 5) and 28 (+5) post-dose three. Fisher exact or X2 tests were used to compare SARS-CoV-2 antibody positivity rates, and paired t-tests were used to compare SARS-CoV-2 antibody geometric mean titers (GMTs) across different time intervals. RESULTS: Among 284 adults diagnosed with solid tumors or hematologic malignancies, dose three of mRNA-1273 increased the percentage of patients seropositive for SARS-CoV-2 antibody from 81.7% pre-dose three to 94.4% 28 days post-dose three. GMTs increased 19.0-fold (15.8-22.8). Patients with lymphoid cancers or solid tumors had the lowest and highest antibody titers post-dose three, respectively. Antibody responses after dose three were reduced among those who received anti-CD20 antibody treatment, had lower total lymphocyte counts and received anticancer therapy within 3 months. Among patients seronegative for SARS-CoV-2 antibody pre-dose three, 69.2% seroconverted after dose three. A majority (70.4%) experienced mostly mild, transient adverse reactions within 14 days of dose three, whereas severe treatment-emergent events within 28 days were very rare (<2%). CONCLUSION: Dose three of the mRNA-1273 vaccine was well-tolerated and augmented SARS-CoV-2 seropositivity in cancer patients, especially those who did not seroconvert post-dose two or whose GMTs significantly waned post-dose two. Lymphoid cancer patients experienced lower humoral responses to dose three of the mRNA-1273 vaccine, suggesting that timely access to boosters is important for this population.


Assuntos
COVID-19 , Neoplasias , Adulto , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/prevenção & controle , SARS-CoV-2 , Neoplasias/tratamento farmacológico
9.
Clin Infect Dis ; 77(9): 1238-1246, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37335963

RESUMO

BACKGROUND: There is growing consensus that coronavirus disease 2019 booster vaccines may be coadministered with other age-appropriate vaccines. Adding to the limited available data supporting coadministration, especially with adjuvanted vaccines, could enhance vaccine coverage in adults. METHODS: In this phase 3, randomized, open-label study, eligible adults aged ≥50 years were randomly assigned (1:1) to receive mRNA-1273 (50 µg) booster vaccination and a first dose of recombinant zoster vaccine (RZV1) 2 weeks apart (Seq group) or concomitantly (Coad group). The second RZV dose (RZV2) was administered 2 months post-RZV1 in both groups. Primary objectives were noninferiority of anti-glycoprotein E (gE) and anti-spike protein antibody responses in the Coad group compared to the Seq group. Safety and further immunogenicity assessments were secondary objectives. RESULTS: In total, 273 participants were randomized to the Seq group and 272 to the Coad group. Protocol-specified noninferiority criteria were met. The adjusted geometric mean concentration ratio (Seq/Coad) was 1.01 (95% confidence interval [CI], .89-1.13) for anti-gE antibodies 1 month post-RZV2, and 1.09 (95% CI, .90-1.32) for anti-spike antibodies 1 month post-mRNA-1273 booster. No clinically relevant differences were observed in overall frequency, intensity, or duration of adverse events between the 2 study groups. Most solicited adverse events were mild/moderate in intensity, each with median duration ≤2.5 days. Administration site pain and myalgia were the most frequently reported in both groups. CONCLUSIONS: Coadministration of mRNA-1273 booster vaccine with RZV in adults aged ≥50 years was immunologically noninferior to sequential administration and had a safety and reactogenicity profile consistent with both vaccines administered sequentially. Clinical Trials Registration. NCT05047770.


Assuntos
COVID-19 , Vacina contra Herpes Zoster , Herpes Zoster , Idoso , Humanos , Pessoa de Meia-Idade , Vacina de mRNA-1273 contra 2019-nCoV , Adjuvantes Imunológicos/efeitos adversos , Anticorpos Antivirais , Vacinas contra COVID-19/efeitos adversos , Herpes Zoster/prevenção & controle , Imunogenicidade da Vacina , Vacinas Sintéticas/efeitos adversos
10.
Lancet Infect Dis ; 23(5): 621-633, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36682364

RESUMO

BACKGROUND: Developing a safe and immunogenic vaccine against Zika virus remains an unmet medical need. We did two phase 1 studies that evaluated the safety and immunogenicity of two mRNA-based Zika virus vaccines (mRNA-1325 and mRNA-1893) in adults. METHODS: Two randomised, placebo-controlled, dose-ranging, multicentre, phase 1 trials, one of mRNA-1325 (mRNA-1325 trial) and one of mRNA-1893 (mRNA-1893 trial), were done. For both studies, eligible participants were healthy adults (aged 18-49 years) who were flavivirus seronegative or flavivirus seropositive at baseline. Participants in the mRNA-1325 trial, which was done at three centres in the USA, were randomly assigned centrally (1:4), using a randomisation table, to the placebo group or one of three mRNA-1325 dose groups (10, 25, or 100 µg). All participants received two doses. The mRNA-1325 vaccine encoded the premembrane and envelope E structural proteins (prME) from a Micronesia 2007 Zika virus isolate. Participants in the mRNA-1893 trial, which was done at three centres in the USA and one centre in Puerto Rico, were randomly assigned (1:4) to the placebo group or one of four mRNA-1893 dose groups (10, 30, 100, or 250 µg) using centralised interactive response technology. All participants in the mRNA-1893 trial received dose one on day 1 and then dose two on day 29. The mRNA-1893 vaccine encoded the prME from the RIO-U1 Zika virus isolate. Safety was the primary outcome of each study, which was evaluated in the respective safety populations (mRNA-1325 trial: participants who received at least one dose and provided safety data; mRNA-1893 trial: participants who received at least one dose) and the solicited safety population (mRNA-1893 trial only: received at least 1 dose and contributed solicited adverse reaction data). Endpoints in both trials included solicited adverse reactions within 7 days after vaccination and unsolicited adverse events within 28 days after vaccination. The secondary outcome of both trials was immunogenicity assessed by Zika virus-specific neutralising antibodies (nAbs) in the per-protocol populations in either trial (participants with no major protocol deviations received full dose[s] of assigned dose level within the acceptable time window, had samples drawn within acceptable time window, and had prevaccination and corresponding post-vaccination serum samples for testing). These were descriptive studies, with no formal hypothesis testing in either trial. Both trials are registered with ClinicalTrials.gov, NCT03014089 (mRNA-1325 trial) and NCT04064905 (mRNA-1893 trial). FINDINGS: The mRNA-1325 trial was done from Dec 14, 2016, to Aug 16, 2018. 90 participants were enrolled: 53 (59%) participants were women and 37 (41%) were men; 84 (93%) were White; and 74 (82%) were not Hispanic or Latino. All three dose levels of mRNA-1325 (10, 25, and 100 µg) were generally well tolerated, but the vaccine elicited poor Zika virus-specific nAb responses. At 28 days after dose two, geometric mean titres (GMTs) were highest for mRNA-1325 10 µg (10·3 [95% CI 5·9-18·2]). The mRNA-1893 trial was done from July 23, 2019, to March 22, 2021. 120 participants (70 [58%] women and 50 [42%] men) were enrolled, most participants were White (89 [74%]), and not Hispanic or Latino (91 [76%]). In the mRNA-1893 trial, solicited adverse reactions in participants who received a vaccine were mostly grade 1 or 2 and occurred more frequently at higher dose levels and after dose two. No participants withdrew due to an unsolicited treatment-emergent adverse event and most of these events were not treatment related. On day 57, all evaluated mRNA-1893 dose levels induced robust Zika virus-specific nAb responses, independent of flavivirus serostatus, that persisted until month 13. At day 57 in participants who were flavivirus seronegative, plaque reduction neutralisation titre test nAb GMTs were highest for mRNA-1893 100 µg (454·2 [330·0-619·6]); in participants who were flavivirus seropositive, GMTs were highest for mRNA-1893 10 µg (224·1 [43·5-1153·5]) and mRNA-1893 100 µg (190·5 [19·2-1887·2]). INTERPRETATION: These findings support the continued development of mRNA-1893 against Zika virus, which was well tolerated at all evaluated dose levels and induced strong Zika virus-specific serum nAb responses after two doses, regardless of baseline flavivirus serostatus. FUNDING: Biomedical Advanced Research and Development Authority and Moderna.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Masculino , Adulto , Humanos , Feminino , Zika virus/genética , Método Duplo-Cego , Vacinação , Porto Rico , Imunogenicidade da Vacina , Infecção por Zika virus/prevenção & controle , Anticorpos Antivirais
11.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38250826

RESUMO

Cancer patients are at an increased risk of morbidity and mortality from SARS-CoV-2 infection and have a decreased immune response to vaccination. We conducted a study measuring both the neutralizing and total antibodies in cancer patients following a third dose of the mRNA-1273 COVID-19 vaccine. Immune responses were measured with an enzyme-linked immunosorbent assay (ELISA) and neutralization assays. Kruskal-Wallis tests were used to evaluate the association between patient characteristics and neutralization geometric mean titers (GMTs), and paired t-tests were used to compare the GMTs between different timepoints. Spearman correlation coefficients were calculated to determine the correlation between total antibody and neutralization GMTs. Among 238 adults diagnosed with cancer, a third dose of mRNA-1273 resulted in a 37-fold increase in neutralization GMT 28 days post-vaccination and maintained a 14.6-fold increase at 6 months. Patients with solid tumors or lymphoid cancer had the highest and lowest neutralization GMTs, respectively, at both 28 days and 6 months post-dose 3. While total antibody GMTs in lymphoid patients continued to increase, other cancer types showed decreases in titers between 28 days and 6 months post-dose 3. A strong correlation (p < 0.001) was found between total antibody and neutralization GMTs. The third dose of mRNA-1273 was able to elicit a robust neutralizing antibody response in cancer patients, which remained for 6 months after administration. Lymphoid cancer patients can benefit most from this third dose, as it was shown to continue to increase total antibody GMTs 6 months after vaccination.

12.
Nat Med ; 28(11): 2388-2397, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202997

RESUMO

Updated immunization strategies are needed to address multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here we report interim results from an ongoing, open-label phase 2/3 trial evaluating the safety and immunogenicity of the bivalent Coronavirus Disease 2019 (COVID-19) vaccine candidate mRNA-1273.211, which contains equal mRNA amounts encoding the ancestral SARS-CoV-2 and Beta variant spike proteins, as 50-µg (n = 300) and 100-µg (n = 595) first booster doses administered approximately 8.7-9.7 months after the mRNA-1273 primary vaccine series ( NCT04927065 ). The primary objectives were to evaluate the safety and reactogenicity of mRNA-1273.211 and to demonstrate non-inferior antibody responses compared to the mRNA-1273 100-µg primary series. Additionally, a pre-specified immunogenicity objective was to demonstrate superior antibody responses compared to the previously authorized mRNA-1273 50-µg booster. The mRNA-1273.211 booster doses (50-µg or 100-µg) 28 days after immunization elicited higher neutralizing antibody responses against the ancestral SARS-CoV-2 and Beta variant than those elicited 28 days after the second mRNA­1273 dose of the primary series ( NCT04470427 ). Antibody responses 28 days and 180 days after the 50-µg mRNA-1273.211 booster dose were also higher than those after a 50-µg mRNA-1273 booster dose ( NCT04405076 ) against the ancestral SARS-CoV-2 and Beta, Omicron BA.1 and Delta variants, and all pre-specified immunogenicity objectives were met. The safety and reactogenicity profile of the bivalent mRNA-1273.211 booster (50-µg) was similar to the booster dose of mRNA-1273 (50-µg). Immunization with the primary series does not set a ceiling to the neutralizing antibody response, and a booster dose of the bivalent vaccine elicits a robust response with titers that are likely to be protective against COVID-19. These results indicate that bivalent booster vaccines can induce potent, durable and broad antibody responses against multiple variants, providing a new tool in response to emerging variants.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinas Combinadas , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
13.
Vaccine ; 40(35): 5275-5293, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35753841

RESUMO

The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit-risk assessment of several vaccine platform technologies, including nucleic acid (RNA and DNA) vaccines. This paper uses the BRAVATO template to review the features of a vaccine employing a proprietary mRNA vaccine platform to develop Moderna COVID-19 Vaccine (mRNA-1273); a highly effective vaccine to prevent coronavirus disease 2019 (Covid-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In response to the pandemic the first in human studies began in March 2020 and the pivotal, placebo-controlled phase 3 efficacy study in over 30,000 adults began in July 2020. Based on demonstration of efficacy and safety at the time of interim analysis in November 2020 and at the time of trial unblinding in March 2021, the mRNA-1273 received Emergency Use Authorization in December 2020 and full FDA approval in January 2022.


Assuntos
COVID-19 , Vacinas Virais , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , COVID-19/prevenção & controle , Humanos , Medição de Risco , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
14.
Res Sq ; 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35547849

RESUMO

Waning immunity after two SARS-CoV-2 mRNA vaccinations and the emergence of variants precipitated the need for a third dose of vaccine. We evaluated early safety and immunogenicity after a third mRNA vaccination in adults who received the mRNA-1273 primary series in the Phase 1 trial approximately 9 to 10 months earlier. The booster vaccine formulations included 100 mcg of mRNA-1273, 50 mcg of mRNA-1273.351 that encodes Beta variant spike protein, and bivalent vaccine of 25 mcg each of mRNA-1273 and mRNA-1273.351. A third dose of mRNA vaccine appeared safe with acceptable reactogenicity. Vaccination induced rapid increases in binding and neutralizing antibody titers to D614G, Beta, and Delta variants that were similar or greater than peak responses after the second dose. Spike-specific CD4+ and CD8+ T cells increased to similar levels as after the second dose. A third mRNA vaccination was well tolerated and generated robust humoral and T cell responses. ClinicalTrials.gov numbers NCT04283461 (mRNA-1273 Phase 1) and NCT04785144 (mRNA-1273.351 Phase 1).

15.
J Infect Dis ; 226(10): 1731-1742, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-35535503

RESUMO

BACKGROUND: Messenger RNA (mRNA)-1273 vaccine demonstrated 93.2% efficacy against coronavirus disease 2019 (COVID-19) in the Coronavirus Efficacy (COVE) trial. The humoral immunogenicity results are now reported. METHODS: Participants received 2 mRNA-1273 (100 µg) or placebo injections, 28 days apart. Immune responses were evaluated in a prespecified, randomly selected per-protocol immunogenicity population (n = 272 placebo; n = 1185 mRNA-1273). Serum binding antibodies (bAbs) and neutralizing antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike protein were assessed at days 1, 29, and 57 by baseline SARS-CoV-2-negative (n = 1197) and SARS-CoV-2-positive (n = 260) status, age, and sex. RESULTS: SARS-CoV-2-negative vaccinees had bAb geometric mean AU/mL levels of 35 753 at day 29 that increased to 316 448 at day 57 and nAb inhibitory dilution 50% titers of 55 at day 29 that rose to 1081 at day 57. In SARS-CoV-2-positive vacinees, the first mRNA-1273 injection elicited bAb and nAb levels that were 11-fold (410 049) and 27-fold (1479) higher than in SARS-CoV-2-negative vaccinees, respectively, and were comparable to levels after 2 injections in uninfected participants. Findings were generally consistent by age and sex. CONCLUSIONS: mRNA-1273 elicited robust serologic immune responses across age, sex, and SARS-CoV-2 status, consistent with its high COVID-19 efficacy. Higher immune responses in those previously infected support a booster-type effect. Clinical Trials Registration. NCT04470427.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunogenicidade da Vacina , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus
16.
medRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291289

RESUMO

Importance: Due to the emergence of highly transmissible SARS-CoV-2 variants, evaluation of boosters is needed. Objectives: Evaluate safety and immunogenicity of 100-µg of mRNA-1273 booster dose in adults. Design: Open-label, Phase 2/3 study. Setting: Multicenter study at 8 sites in the U.S. Participants: The mRNA-1273 100-µg booster was administered to adults who previously received a two dose primary series of 100-µg mRNA-1273 in the phase 3 Coronavirus Efficacy (COVE) trial, at least 6 months earlier. Intervention: Lipid nanoparticle containing 100-µg of mRNA encoding the spike glycoprotein of SARS-CoV-2 (Wuhan-HU-1). Main Outcomes and Measures: Solicited local and systemic adverse reactions, and unsolicited adverse events were collected after vaccination. Primary immunogenicity objectives were to demonstrate non-inferiority of the neutralizing antibody (nAb) response against SARS-CoV-2 based on the geometric mean titer (GMTs) and the seroresponse rates (SRRs) (booster dose vs. primary series in a historical control group). nAbs against SARS-CoV-2 variants were also evaluated. Results: The 100-µg booster dose had a greater incidence of local and systemic adverse reactions compared to the second dose of mRNA-1273 as well as the 50-µg mRNA-1273 booster in separate studies. The geometric mean titers (GMTs; 95% CI) of SARS-CoV-2 nAbs against the ancestral SARS-CoV-2 at 28 days after the 100-µg booster dose were 4039.5 (3592.7,4541.8) and 1132.0 (1046.7,1224.2) at 28 days after the second dose in the historical control group [GMT ratio=3.6 (3.1,4.2)]. SRRs (95% CI) were 100% (98.6,100) at 28 days after the booster and 98.1% (96.7,99.1) 28 days after the second dose in the historical control group [percentage difference=1.9% (0.4,3.3)]. The GMT ratio (GMR) and SRR difference for the booster as compared to the primary series met the pre-specified non-inferiority criteria. Delta-specific nAbs also increased (GMT fold-rise=233.3) after the 100-µg booster of mRNA-1273. Conclusions and Relevance: The 100-µg mRNA-1273 booster induced a robust neutralizing antibody response against SARS-CoV-2, and reactogenicity was higher with the 100-µg booster dose compared to the authorized booster dose level in adults (50-µg). mRNA-1273 100-µg booster dose can be considered when eliciting an antibody response might be challenging such as in moderately or severely immunocompromised hosts. Trial Registration: NCT04927065.

17.
Nat Med ; 28(5): 1042-1049, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35241844

RESUMO

Rising breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals have raised concerns for the need for a booster vaccine dose to combat waning antibody levels and new variants. Here we report the results of the open-label, non-randomized part B of a phase 2 trial in which we evaluated the safety and immunogenicity of a booster injection of 50 µg of the coronavirus disease 2019 (COVID-19) vaccine mRNA-1273 in 344 adult participants immunized 6-8 months earlier with a primary series of two doses of 50 µg or 100 µg of mRNA-1273 ( NCT04405076 ). Neutralizing antibody (nAb) titers against wild-type SARS-CoV-2 at 1 month after the booster were 1.7-fold (95% confidence interval (CI): 1.5, 1.9) higher than those at 28 days after the second injection of the primary series, which met the pre-specified non-inferiority criterion (primary immunogenicity objective) and might indicate a memory B cell response. The nAb titers against the Delta variant (B.1.617.2) (exploratory objective) at 1 month after the booster were 2.1-fold (95% CI: 1.8, 2.4) higher than those at 28 days after the second injection of the primary series. The seroresponse rate (95% CI (four-fold rise from baseline)) was 100% (98.7, 100.0) at 28 days after the booster compared to 98.3% (96.0, 99.4) after the primary series. The higher antibody titers at 28 days after the booster dose compared to 28 days after the second dose in the phase 3 COVE study were also observed in two assays for anti-spike IgG antibody measured by ELISA and by Meso Scale Discovery (MSD) Multiplex. The frequency of solicited local and systemic adverse reactions after the booster dose was similar to that after the second dose in the primary two-dose series of mRNA-1273 (50 µg or 100 µg); no new signals were observed in the unsolicited adverse events; and no serious adverse events were reported in the 1-month follow-up period. These results show that a booster injection of mRNA-1273 more than 6 months after completing the primary two-dose series is safe and elicited nAb titers that were statistically significantly higher than the peak titers detected after the primary vaccination series, suggesting that a booster dose of mRNA-1273 might result in increased vaccine effectiveness against infection and disease caused by SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Imunidade , Imunogenicidade da Vacina
18.
Nat Med ; 28(4): 823-830, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35145311

RESUMO

The mRNA-1273 vaccine for coronavirus disease 2019 (COVID-19) demonstrated 93.2% efficacy in reduction of symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the blinded portion of the Phase 3 Coronavirus Efficacy (COVE) trial. While mRNA-1273 demonstrated high efficacy in prevention of COVID-19, including severe disease, its effect on the viral dynamics of SARS-CoV-2 infections is not understood. Here, in exploratory analyses, we assessed the impact of mRNA-1273 vaccination in the ongoing COVE trial (number NCT04470427) on SARS-CoV-2 copy number and shedding, burden of disease and infection, and viral variants. Viral variants were sequenced in all COVID-19 and adjudicated COVID-19 cases (n = 832), from July 2020 in the blinded part A of the study to May 2021 of the open-label part B of the study, in which participants in the placebo arm started to receive the mRNA-1273 vaccine after US Food and Drug Administration emergency use authorization of mRNA-1273 in December 2020. mRNA-1273 vaccination significantly reduced SARS-CoV-2 viral copy number (95% confidence interval) by 100-fold on the day of diagnosis compared with placebo (4.1 (3.4-4.8) versus 6.2 (6.0-6.4) log10 copies per ml). Median times to undetectable viral copies were 4 days for mRNA-1273 and 7 days for placebo. Vaccination also substantially reduced the burden of disease and infection scores. Vaccine efficacies (95% confidence interval) against SARS-CoV-2 variants circulating in the United States during the trial assessed in this post hoc analysis were 82.4% (40.4-94.8%) for variants Epsilon and Gamma and 81.2% (36.1-94.5%) for Epsilon. The detection of other, non-SARS-CoV-2, respiratory viruses during the trial was similar between groups. While additional study is needed, these data show that in SARS-CoV-2-infected individuals, vaccination reduced both the viral copy number and duration of detectable viral RNA, which may be markers for the risk of virus transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Estados Unidos
20.
N Engl J Med ; 385(16): 1485-1495, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34644472

RESUMO

BACKGROUND: Cell-culture-derived influenza vaccines may enable a closer antigenic match to circulating strains of influenza virus by avoiding egg-adapted mutations. METHODS: We evaluated the efficacy of a cell-culture-derived quadrivalent inactivated influenza vaccine (IIV4c) using a Madin-Darby canine kidney cell line in children and adolescents 2 to less than 18 years of age. During three influenza seasons, participants from eight countries were enrolled in an observer-blinded, randomized clinical trial comparing IIV4c with a noninfluenza vaccine (meningococcal ACWY). All the participants received a dose of a trial vaccine. Children 2 to less than 9 years of age without previous influenza vaccination who were assigned to the IIV4c group received a second dose on day 29; their counterparts who were assigned to the comparator group received placebo. Participants were followed for at least 180 days for efficacy and safety. The presence of influenza virus in nasopharyngeal swabs from participants with influenza-like illness was confirmed by reverse-transcriptase-polymerase-chain-reaction assay and viral culture. A Cox proportional-hazards model was used to evaluate the efficacy of IIV4c as measured by the first occurrence of laboratory-confirmed type A or B influenza (primary end point). RESULTS: Between 2017 and 2019, a total of 4514 participants were randomly assigned to receive IIV4c or the meningococcal ACWY vaccine. Laboratory-confirmed influenza occurred in 175 of 2257 participants (7.8%) in the IIV4c group and in 364 of 2252 participants (16.2%) in the comparator group, and the efficacy of IIV4c was 54.6% (95% confidence interval [CI], 45.7 to 62.1). Efficacy was 80.7% (95% CI, 69.2 to 87.9) against influenza A/H1N1, 42.1% (95% CI, 20.3 to 57.9) against influenza A/H3N2, and 47.6% (95% CI, 31.4 to 60.0) against influenza B. IIV4c showed consistent vaccine efficacy in subgroups according to age, sex, race, and previous influenza vaccination. The incidences of adverse events were similar in the IIV4c group and the comparator group. CONCLUSIONS: IIV4c provided protection against influenza in healthy children and adolescents across seasons, regardless of previous influenza vaccination. (Funded by Seqirus; EudraCT number, 2016-002883-15; ClinicalTrials.gov number, NCT03165617.).


Assuntos
Imunogenicidade da Vacina , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Adolescente , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Feminino , Humanos , Vacinas contra Influenza/efeitos adversos , Masculino , Vacinas Meningocócicas/imunologia , Orthomyxoviridae/isolamento & purificação , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Método Simples-Cego , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...